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Why resummation?

• In problems with widely separated scales 
Q1 >> Q2 fixed order PT is not appropriate

• Large logarithms αsn Logn(Q1/Q2) and                   
αsn Log2n(Q1/Q2).

• Scale in coupling? αs(Q1) or αs(Q2)?

• Standard solution

• Use effective theories to separate the effects 
associated with different scales. 

• RG evolution in the effective theory resums 
large log’s. 

Sudakov logarithms



Resummation for collider processes

• In the past 20 years resummations were 
performed for many collider processes 
with scale hierarchies

• DIS for x→1, Drell-Yan and Higgs production for 
Q2/s →1, for QT2/Q2 →0.

• e+e- event shapes, hadronic event shapes, ... 
• ...
• LL for arbitrary observable with parton 

shower

• Resummation are traditionally performed  
with diagrammatic methods.



Resummation with SCET
• With SCET, we can

• resum using RG evolution
• freedom to choose matching scales, 

simple connection to fixed order
• properly separate scales

• no coupling constants at unphysically 
low scales

• work directly in momentum space
• standard approach takes detour into 

moment space.



Threshold resummation
• Relevant for processes in which

• Factorization theorem takes the form

• Will use DIS as an example, but same 
structure for

• B→Xs γ, B→Xs l+l−, B→Xu l ν,
• Drell-Yan, Higgs-production, ...

  in the limit MX2 << Q2.

Q2 !M2
X ! Λ2

QCD

dΓ = H · J ⊗ S



Outline
• DIS as x→1
• Resummation

• Traditional method
• Using RG evolution in SCET

• Derivation of RG equations
• Solution of the RG evolution 

equations by Laplace transform
• Connection with trad. method
• Numerical results



Kinematics of DIS

• Are interested in the limit x→1, more 
precisely

Q2
= −q2

x =
Q2

2p · q

Xpµ

qµ

Q2
! Q2(1 − x) ! Λ2

QCD

≈ M
2

X

e−(k) + N(p) → e−(k′) + X(P )



Factorization theorems

• Generic x

• End-point region x→1  (                           ) 

1 Introduction

It is well known that fixed-order perturbation theory is not reliable for quantities involving
several disparate scales. In such cases, higher-order corrections are enhanced by large loga-
rithms of scale ratios. The standard solution to this problem is to split the calculation into a
series of single-scale problems by successively integrating out the physics associated with the
largest remaining scale. Perturbative logarithms are then resummed by renormalization-group
(RG) evolution from the larger scales to the smaller ones. For collider processes, resummation
is traditionally performed by other means, since it was not always clear how to systematically
integrate out the physics associated with high scales in such cases.

The simplest example of a high-energy process with a scale hierarchy which necessitates
resummation is deep-inelastic scattering (DIS) in the threshold region. As the Bjorken scaling
variable x → 1, the invariant mass of the hadronic system produced in the decay, MX =

Q
√

1−x
x (neglecting the nucleon mass), becomes much smaller than the momentum transfer

Q. The presence of the two scales is manifest in the QCD factorization theorem [1, 2, 3]

F ns
2 (x, Q2) = H(Q2, µ) Q2

∫ 1

x

dz

z
J

(
Q2 1 − z

z
, µ

) x

z
φns

q

(x

z
, µ

)
, (1)

for the non-singlet part of the structure function F2(x, Q2). The result (1) is valid in the
threshold region at leading power in M2

X/Q2 ≈ (1 − x) and Λ2
QCD/M2

X . As long as MX $
ΛQCD, both the jet function J(M2

X , µ) and the hard function H(Q2, µ) can be evaluated in
perturbation theory, whereas the parton distribution function φns

q (ξ, µ) is a non-perturbative
object. The result for the hard function involves single and (Sudakov) double logarithms of the
form αn

s lnm(Q/µ), with m ≤ 2n, while the integral over the jet function produces logarithms
αn

s lnm(MX/µ). Irrespective of the value of the renormalization scale µ, the fixed-order result
contains large logarithms.

Traditionally, the resummation of these logarithms is performed in moment space. The
threshold region of small MX is probed by large-N moments. The relevant scale in Mellin
space is Q/

√
N , so that the large perturbative logarithms depend on the moment parameter

N . In [1, 2] it was shown that these logarithms can be absorbed into a resummation exponent
GN , defined by integrals over two radiation functions Aq(αs) and Bq(αs),

GN (Q2, µ) =
∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)]

. (2)

The functions Aq and Bq are determined by matching with results from fixed-order perturba-
tion theory and are currently known at three-loop order, enabling a nearly complete threshold
resummation to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [4]. The re-
summed momentum-space structure function F2(x, Q2) is obtained from the moment-space
expression by an inverse Mellin transformation.

This approach to threshold resummation has several drawbacks. The first is related to
integrations over the Landau pole in the running coupling. These occur twice: once in the
integrals over the functions Aq and Bq in the resummation exponent, and once again when
the inverse Mellin transform is taken to obtain results in momentum space. To perform the
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 Traditional method: moment space

• Convolution in momentum space → 
product in moment space

• x→1  corresponds to N→∞. Perturbation 
theory contains αsn Logn(N) and αsn Log2n(N)

• Split:

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Resummation in moment space

• Aq, Bq determined by matching to fixed  
order result.

•
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√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that

3

Cusp anomalous dim. Anom. dim. of ??

Landau pole

NNNLL: Moch, Vermaseren, Vogt ‘05



Mellin Inversion

• Can only be done numerically

• Problem with Fortran PDF’s.

F2 =
1

2πi

∫ c+i∞

c−i∞

dN x−NφN CN

 N

xxxxx

Landau pole

x



anti-collinear + soft-collinear
PDF for ξ→1

hard-collinear
propagator in LC gauge

hard part
OS form factor

Factorization theorem in SCET

• Any choice of the scale µ will lead to large 
perturbative logarithms.
• Solve RG for individual parts, evolve to 

common scale.

It is understood that the anti-collinear fields located at the points 0 and tn interact only via
soft-collinear gluon exchange. Both (24) and the QCD matrix element (23) depend on the
single invariant p2 = m2, so there is no non-trivial hard matching coefficient. The matrix
element (24) is precisely the object we encountered in (22). We can use this correspondence
along with some simple algebra to find

W1 = |CV (Q2, µ)|2 i
∫

d(n · k) n̄ · qJ (q2 + n · k n̄ · q, µ) φns
q

(n · k
n · p

, µ
)
. (25)

The structure function F ns
2 (x, Q2) equals

∑
q e2

q x 1
π Im W1, where the eq are quark electric

charges. Inserting the definition of the jet function (21), and recalling that q2 = −Q2 and
n · p n̄ · q = Q2/x + power corrections, we obtain the final result for the factorization formula

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µ)|2 Q2

∫ 1

x
dξ J

(
Q2 ξ − x

x
, µ

)
φns

q (ξ, µ) . (26)

This formula is valid to all orders in perturbation theory and at leading power in (1− x) and
Λ2

QCD/M2
X . The argument of the jet function takes values between 0 and M2

X , where the total
jet invariant mass was given in (8). The equivalent form (1) is obtained by substituting ξ =
x/z. At tree-level, this formula evaluates to the familiar parton-model expression F ns

2 (x, Q2) =
∑

q e2
q xφns

q (x).
Relation (26) is the standard form of the QCD factorization formula for the DIS structure

function in the limit x → 1 [1, 2, 3], which we have derived here using SCET. We hope our
derivation helps resolve some of the disagreements in the literature. Soft-collinear messenger
modes obviously play a crucial role in the derivation, as the parton distribution function
at large ξ is defined in terms of these fields. The proper effective-theory description of the
parton distribution function thus requires two distinct non-perturbative modes. This element
is missing from [17, 20], where it was argued that only one non-perturbative mode is needed,
either because the soft graphs vanish in the Breit frame calculation, or because the effective-
theory formulation in the target rest frame involves only one non-perturbative mode from the
beginning. Although we disagree with these statements (the second of which would violate
reparameterization invariance in the effective theory), our explicit one-loop results agree with
those derived in these papers. This is because our findings imply that parton evolution in
the endpoint region can be described simply by taking the x → 1 limit of the Altarelli-Parisi
splitting functions, which is effectively what was done in the calculations of [17]. Our explicit
one-loop results also agree with those in [18], where the power counting ε = 1 − x ∼ λ =
ΛQCD/Q was adopted. While this counting is possible and natural in view of the hierarchy
λ2 $ ε $ 1, it does not imply that the soft-collinear scale m2(1 − x) depends on the scale
Q, and the presence of this scale does not translate into non-perturbative Q-dependence
in the parton distribution function, as was suggested in [18]. Finally, we have shown that
the soft-collinear contributions are precisely such that they can be absorbed into the parton
distribution function. We therefore do not confirm the claims of soft contributions outside the
parton distribution function made in [19]. The same conclusion as ours was reached in [21, 22],
where it was argued that the infrared divergences due to collinear and soft emissions can be
absorbed in the standard QCD parton distribution function, although [21] did not discuss

11

H(µh) × U1(µh, µi) × J(µi) ⊗ U2(µi, µf ) ⊗ φ(µf )
match  →       run   →  match   →    run



• RG equation for CV 

• Solution

Resummation by RG evolution: 1. hard part

3 Renormalization-group evolution and resummation

The factorization formula for the DIS structure function derived in the previous section con-
tains physics associated with different momentum scales factorized into a hard coefficient
function CV , a jet function J , and non-perturbative parton distribution functions φns

q . These
three objects depend on a scale µ at which the corresponding effective theory operators are
renormalized. The hard matching coefficient and the jet function need to be calculated us-
ing perturbative QCD. These calculations can only be done at fixed order when the scale is
chosen appropriately so as to avoid large logarithms: the function CV should be computed
at a hard scale µh ∼ Q, while the jet function should be computed at an intermediate scale
µi ∼ MX ∼ Q

√
1 − x. The results of these calculations must then be evolved to the common

scale µ in (21) by solving renormalization-group (RG) evolution equations. [Say that these
are easier to derive in EFT than in Sterman’s approach? Also say what one should do
about the scale of the PDFs, and what is usually done in the literature!]

3.1 Evolution of the hard function

We begin by discussing the evolution of the hard matching coefficient CV in (13). At leading
power there is a single gauge-invariant SCET operator the QCD current can match onto, and
hence there is no operator mixing. The exact evolution equation takes the form

d

d lnµ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (29)

where Γcusp is the universal cusp anomalous dimension of Wilson loops with light-like segments
[19, 20]. The appearance of the cusp logarithm and its coefficient in (29) can be traced back
to the presence of the closed Wilson loop S†

n̄(x−) Sn(x−) in the matching relation (28) for the
current operator after the decoupling transformation has been applied [15]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution effects.

The exact solution to the evolution equation (29) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (30)

where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (31)

(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (32)
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where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d
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S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (31)

(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
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dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)
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Γcusp(α)
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2S(µh, µ) − aγV (µh, µ)

](
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where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
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(
αs(µ)
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ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
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(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
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dα
Γcusp(α)
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Three-loop anomalous dimension
• On-shell form factor is known to two-loops, divergencies 

even to three loops (Moch, Vermaseren Vogt ‘05).
• Can extract anomalous dimension to three loops:

We now list expressions for the anomalous dimensions and the QCD β-function, quoting
all results in the MS renormalization scheme. For the convenience of the reader, we also give
numerical results for nf = 5. The expansion of the cusp anomalous dimension Γcusp to two-
loop order was obtained some time ago [10], while recently the three-loop coefficient has been
obtained in [46]. For the four-loop coefficient Γ3, we use the Padé approximants derived in
[4]. The results are

Γ0 = 4CF =
16

3
,

Γ1 = 4CF

[(
67

9
− π2

3

)

CA − 20

9
TF nf

]

≈ 36.8436 ,

Γ2 = 4CF

[

C2
A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)

+ CATF nf

(

−418

27
+

40π2

27
− 56

3
ζ3

)

+ CFTF nf

(
−55

3
+ 16ζ3

)
− 16

27
T 2

F n2
f

]

≈ 239.208 ,

Γ3 ≈ 7849, 4313, 1553 for nf = 3, 4, 5 . (95)

The anomalous dimension γV can be determined up to three-loop order from the partial three-
loop expression for the on-shell quark form factor in QCD, which has recently been obtained
in [45]. We find

γV
0 = −6CF = −8 ,

γV
1 = C2

F

(
−3 + 4π2 − 48ζ3

)
+ CF CA

(

−961

27
− 11π2

3
+ 52ζ3

)

+ CFTF nf

(
260

27
+

4π2

3

)

≈ 1.1419 ,

γV
2 = C3

F

(

−29 − 6π2 − 16π4

5
− 136ζ3 +

32π2

3
ζ3 + 480ζ5

)

+ C2
F CA

(

−151

2
+

410π2

9
+

494π4

135
− 1688

3
ζ3 −

16π2

3
ζ3 − 240ζ5

)

+ CF C2
A

(

−139345

1458
− 7163π2

243
− 83π4

45
+

7052

9
ζ3 −

88π2

9
ζ3 − 272ζ5

)

+ C2
F TF nf

(
5906

27
− 52π2

9
− 56π4

27
+

1024

9
ζ3

)

+ CF CATFnf

(

−34636

729
+

5188π2

243
+

44π4

45
− 3856

27
ζ3

)

+ CF T 2
F n2

f

(
19336

729
− 80π2

27
− 64

27
ζ3

)

≈ −249.388 . (96)
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Aside: derivation of the RG evolution equation

• Off-shell vector form factor

• Soft matrix element is Wilson line with a 
cusp. RG equation:

p2
soft =

p2p′2

Q2

F (Q2, p2, p′2, µ) = CV (Q2, µ) Ĵ(p2, µ) Ĵ(p′2, µ) S(p2
soft, µ)

Korchemsky & 
Radyushkin ‘87

d

d lnµ
S(p2

soft, µ) = −
[
Γcusp ln

µ2

p2
soft

+ γs

]
S(p2

soft, µ)

not the same collinear 
matrix element as in DIS



Anomalous dimensions for J and CV

• Anomalous dimensions

γV (Q2, µ) = −Γcusp ln
µ2

Q2
+ γV

γĴ(p2, µ) = Γcusp ln
µ2

p2
+ γĴ

d

d lnµ
ln

[
CV (Q2, µ) Ĵ(p2, µ) Ĵ(p′2, µ) S(p2

soft, µ)
]

=

γV (Q2, µ) + γĴ(p2, µ) + γĴ(p′2, µ)− Γcusp ln
Q2µ2

p2p′2 − γs = 0

 TB, Hill, Lange, Neubert  ‘03



Resummation by RG evolution: 2. jet function

• RG evolution equation for jet-function 
involves convolution

d

d lnµ
J(p2, µ) ≡ γ ⊗ J

=
∫ p2

0
dp′2 γ(p2 − p′2, µ) J(p′2, µ)both implicitly (via the renormalized coupling constant) and explicitly (via Sudakov logarithms con-

tained in star distributions) on the renormalization scale [2].

To all orders in perturbation theory the anomalous-dimension kernel of the jet function has the

form

γjet(p
2, p′2, µ) = 2Γcusp(αs)

(
1

p2 − p′2

)[µ2]

∗
+ 2γJ(αs) δ(p

2 − p′2) , (21)

where Γcusp is the cusp anomalous dimension associated with the Sudakov double logarithms, while

γJ controls the single-logarithmic evolution of the jet function. The definition of the star distribution

can be found in [6]. The corresponding integro-differential evolution equation reads

dJ(p2, µ)

d ln µ
= −
[
2Γcusp ln

p2

µ2
+ 2γJ

]
J(p2, µ) − 2Γcusp

∫ p2

0

dp′2
J(p′2, µ) − J(p2, µ)

p2 − p′2
. (22)

We have derived relation (21) by requiring that the B̄ → Xsγ decay rate be renormalization-group

invariant and using the known evolution equations for the soft function [22] and for the hard match-

ing coefficient [8, 23]. Denoting by Z[n] the coefficient of (αs/4π)
n in Z(p2, p′2, µ), we obtain from

(20)

Z[0] = δ(p
2 − p′2) ,

Z[1] = δ(p
2 − p′2)

(
−
Γ0

ε2
+
γJ
0

ε

)
+
Γ0

ε

(
1

p2 − p′2

)[µ2]

∗
,

Z[2] = δ(p
2 − p′2)



Γ20

2ε4
−
Γ0(γ

J
0
− 3

4
β0)

ε3
+

(
γJ
0
(γJ
0
− β0)
2

−
Γ1

4
−
π2

12
Γ20

)
1

ε2
+
γJ
1

2ε




+


−
Γ20

ε3
+
Γ0(γ

J
0
− 1
2
β0)

ε2
+
Γ1

2ε



(

1

p2 − p′2

)[µ2]

∗
+
Γ20

ε2



ln

p2−p′2

µ2

p2 − p′2




[µ2]

∗

, (23)

where the expansion coefficients of the anomalous dimensions and β-function are defined as

Γcusp(αs) =

∞∑

n=0

Γn

(
αs

4π

)n+1
, γJ(αs) =

∞∑

n=0

γn

(
αs

4π

)n+1
,

β(αs) =
dαs

d ln µ
= −2αs

∞∑

n=0

βn

(
αs

4π

)n+1
. (24)

The expression for the two-loop cusp anomalous dimension can be found, e.g., in our previous

paper [2]. The two-loop anomalous dimension of the jet function has never been calculated directly,

but it was inferred in [1] from existing two-loop results for jet-function moments in deep-inelastic

scattering [24]. In that way one obtains

γJ0 = −3CF , (25)

γJ1 = C
2
F

(
−
3

2
+ 2π2 − 24ζ3

)
+CFCA

(
−
1769

54
−
11π2

9
+ 40ζ3

)
+ CFTFn f

(
242

27
+
4π2

9

)
.

7

γ(p2 − p′2, µ)

similar to plus distribution



Convoluted RG-evolution
• RG evolution equations for

• jet-function(s)
• shape function
• pdf in the end-point
• B-meson LCDA

all have the same structure. 
• Will now discuss solution in detail

• First solved by Lange & Neubert ‘03. Have 
simpler derivation based on Laplace 
transform. TB, M.Neubert ‘06



Engineering 101: Laplace transformation

• Definition

• Inversion

• De-convolution

L[f ](s) =
∫ ∞

0
dω e−sω f(ω)

f(ω) =
1

2πi

∫ c+i∞

c−i∞
ds esx L[f ](s)

L[f ⊗ g](s) = L[f ](s) × L[g](s)

f ⊗ g =
∫ ω

0
dω′ f(ω − ω′) g(ω′)



Star distributions

• for Ω=µ=1 the *-dist’s reduce to +-dist’s
• Generating function

• Laplace transforms:
L[δ(ω)] = 1

L
[(

1
ω

)[µ]

∗

]
= −γE − ln(µs)

L
[(

lnω

ω

)[µ]

∗

]
=

π2

6
+ ln2(eγE µs)

∫ Ω

0
dω

µε

ω1+ε
f(ω) =

∫ Ω

0
dω

[
−1

ε
δ(ω) +

(
1
ω

)[µ]

∗
+

∞∑

n=1

(−ε)n

n!

(
lnn(ω)

ω

)[µ]

∗

]
f(ω)

∫ Ω

0
dω

(
1
ω

)[µ]

∗
f(ω) =

∫ Ω

0
dω

1
ω

[f(ω)− f(0)] + ln
Ω
µ

f(0)



• Laplace

• Same RGE  as hard function

 

• Invert:

Application to jet-function RG

3.2 Evolution of the jet function

The RG evolution of the jet function is more complicated. It was recently shown that the
exact integro-differential evolution equation obeyed by the function J(p2, µ) is [31]

dJ(p2, µ)

d lnµ
= −

[

2Γcusp(αs) ln
p2

µ2
+ 2γJ(αs)

]

J(p2, µ) − 2Γcusp(αs)
∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

(40)
We encounter again the cusp anomalous dimension, and in addition a new function γJ , which
has been calculated at two-loop order in [31].

An important object in the derivation of the solution to this equation is the associated jet
function j̃(L, µ), where L = ln(Q2/µ2). This function has originally been defined in terms of
an integral over the jet function followed by a certain replacement rule [25]. More elegantly,
the associated jet function can be obtained from J by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫ ∞

0
dp2 e−sp2

J(p2, µ) , s =
1

eγEQ2
. (41)

The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞
ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
, (42)

where the contour must be chosen to stay to the right of all discontinuities (i.e., c > 0). Using
the evolution equation (40) for the jet function, we find that the associated jet function obeys
the RG equation

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)
= −

[

2Γcusp(αs) ln
Q2

µ2
+ 2γJ(αs)

]

j̃
(

ln
Q2

µ2
, µ

)
, (43)

which is local in Q2 and analogous to the evolution equation (36) for the hard function. The
solution to this equation reads

j̃
(

ln
Q2

µ2
, µ

)
= exp

[
−4S(µi, µ) + 2aγJ (µi, µ)

] (
Q2

µ2
i

)2aΓ(µi,µ)

j̃
(

ln
Q2

µ2
i

, µi

)
, (44)

where aγJ is defined in analogy with (38). Given this solution one can readily derive the
solution to the complicated evolution equation (40) for the original jet function by using the
inverse transformation (42). The result is

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

] e−γEη

Γ(η)

∫ p2

0
dp′2

J(p′2, µi)

(µ2
i )η(p2 − p′2)1−η

, (45)

where η = 2aΓ(µi, µ). This solution is valid as long as η > 0, which implies that µ < µi.
Equation (45) is analogous to the solution for the evolution equation of the B-meson shape
function found in [24, 32] using a technique developed in [38].

Using the connection between J and j̃ implied by Laplace transformation, it is possible to
derive an even more elegant expression for the jet function J(p2, µ), which does not involve
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where η = 2aΓ(µi, µ). This solution is valid as long as η > 0, which implies that µ < µi.
Equation (38) is completely analogous to the solution for the evolution equation of the B-
meson shape function found in [18, 21] using a technique developed in [23].

Using the connection between J and j̃ implied by Laplace transformation, it is possible to
derive an even more elegant expression for the jet function J(p2, µ), which does not involve
an integral and which is valid for both µ > µi and µ < µi. The result relates J to the
associated jet function j̃ evaluated at the scale µi, where it can be computed using fixed-order
perturbation theory. We obtain [Refer to the “wonderful formula” in B → Xsγ decay?]

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]
j̃(∂η, µi)

[
1

p2

(
p2

µ2
i

)η]

∗

e−γEη

Γ(η)
, (39)

where ∂η denotes a derivative with respect to the quantity η, and the star distribution is
defined as [24]

∫ Q2

0

dp2

[
1

p2

(
p2

µ2

)η]

∗
f(p2) =

∫ Q2

0

dp2 f(p2) − f(0)

p2

(
p2

µ2

)η

+
f(0)

η

(
Q2

µ2

)η

, (40)

where f(p2) is a smooth test function. The subtraction term involving f(0) is only required
if η < 0. In the form given above formula (39) holds as long as η > −1, which is sufficient for
all practical purposes. For even smaller values of η, it would be necessary to perform further
subtractions in (40) by using the double-star distributions introduced in [25].

3.3 Matching conditions and anomalous dimensions

In order to evaluate the solutions (30) and (39) of the RG equations we need as matching
conditions the value CV (Q2, µh) of the hard function at the scale µh ∼ Q, and the result for
the associated jet function j̃(L, µi) at the intermediate scale µi ∼ Q

√
1 − x. These functions

are free of large logarithms and hence can be reliably computed using fixed-order perturbation
theory. We also need perturbative expressions for the anomalous dimensions Γcusp, γV , and
γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when the
vector current in full QCD is matched onto an effective current built out of operators in SCET.
To obtain an expression for the Wilson coefficient one must compute, at a given order in αs,
perturbative expressions for the photon vertex function in the two theories. The calculation
is simplified greatly by performing these calculations on-shell, in which case all loop graphs
in the effective theory are scale-less and hence vanish. The bare on-shell vertex function in
QCD (called the on-shell quark form factor) has been studied extensively in the literature.
The form factor is infrared divergent and can be regularized using dimensional regularization.
The bare form factor at two-loop order was calculated long ago [26, 27, 28, 29, 30], [I believe
the first calculation is incorrect! I havn’t checked the other papers except for the one
by Gehrman et al.!] and recently the infra-red divergent contributions have even been
computed at three-loop order [31]. [Also, in a heroic effort, Manohar recently succeeded
to obtain the expression valid at one-loop order [8]!] When the (vanishing) SCET graphs
are subtracted from the QCD result, the infrared poles in 1/ε get transformed into ultraviolet
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Even more elegantly:
• Rewrite log’s as derivatives:                       

• Solution

j̃(ln
Q2

µ2
i

, µi)
(

Q2

µi

)η

= j̃(∂η, µi)
(

Q2

µi

)η

form factor is infrared divergent and must be regular-
ized. When the SCET graphs are subtracted from the
QCD result, the infrared poles in 1/ε get cancelled and
replaced by ultraviolet poles. To obtain the matching co-
efficient we introduce a renormalization factor ZV , which
absorbs these poles. At one-loop order this gives [6]

CV (Q2, µ) = 1 +
CF αs

4π

(
−L2 + 3L − 8 +

π2

6

)
,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation

dCV (Q2, µ)

d lnµ
=

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) ,

(1)

where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [13], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [12] it
can be calculated at three-loop order. The result is pre-
sented in [1].

The jet function J is defined in terms of the disconti-
nuity of a vacuum correlator of two quark fields, made
gauge invariant by the introduction of Wilson lines. It
obeys the integro-differential evolution equation [14]

dJ(p2, µ)

d ln µ
= −

[
2Γcusp(αs) ln

p2

µ2
+ 2γJ(αs)

]
J(p2, µ)

− 2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [14] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RG EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents an are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [15]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)

= −
[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ(αs)

]
j̃
(

ln
Q2

µ2
, µ

)
,

which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]

× j̃(∂η, µi)
e−γEη

Γ(η)

1

p2

(
p2

µ2
i

)η

, (5)

where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results
of this Letter. It relates J to the associated jet function
j̃ evaluated at the scale µi, where it can be computed
using fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [14].

2
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Resummation by RG evolution: 3. PDF near the end-point

• Equation (and its solution) can be 
obtained from

• Can obtain 3-loop γJ using

3.5 Parton evolution near the endpoint

The easiest way to derive the evolution equation for the parton distribution function in the
limit x → 1 is to use that the factorized expression (26) for the structure function F2 must be
independent of the arbitrary renormalization scale µ, and to combine this information with
the known scale dependences of the hard and jet functions, given in (36) and (40). This yields

d

d lnµ
φns

q (ξ, µ) = 2γφ(αs) φns
q (ξ, µ) + 2Γcusp(αs)

∫ 1

ξ
dξ′

φns
q (ξ′, µ)

[ξ′ − ξ]∗

=
∫ 1

ξ

dz

z
P (endpt)

q←q (z) φns
q

(ξ

z
, µ

)
, (64)

where

P (endpt)
q←q (z) =

2Γcusp(αs)

(1 − z)+
+ 2γφ(αs) δ(1 − z) (65)

is the z → 1 limit of the Altarelli-Parisi splitting function Pq←q(z), which is known from
direct calculation at three-loop order [46]. The asymptotic form of the splitting function
near the endpoint given above holds to all orders in perturbation theory, up to corrections of
order (1 − z). Recall that the anomalous dimension γφ was defined as the difference of the
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Result for F2

• Evolve CV and J from µh and µi to scale 
µf , plug into factorization theorem

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η , (6)

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (7)

The exact all-order results (6) and (7) are independent
of the scales µh and µi, at which the matching coefficient
CV and the associated jet function j̃ are calculated. The
answers simplify further if we choose the “natural” val-
ues µh = Q and µi = Q

√
1 − x (for fixed x). In practi-

cal calculations the residual dependence on these scales
introduced by the truncation of the perturbative expan-
sions of the various objects can be used as an estimator
of yet unknown higher-order corrections.

Above we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formulae are simpler than corresponding
expressions in the literature (see e.g. [15]) in that they
do not require a Mellin inversion and in that the de-
pendence on x and Q is explicit. The right-hand sides
of (6) and (7) can be evaluated at any desired order in
resummed perturbation theory. Using currently avail-
able results, it is possible to include terms at NNLO

[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1−x) $ Λ2

QCD/Q2, since only then the interme-

diate scale µi ∼ Q
√

1 − x is a short-distance scale. While
the theoretical description thus breaks down very close
to the endpoint, we note that weighted integrals of the
structure function over an interval x0 ≤ x ≤ 1 can be
calculated as long as Q

√
1 − x0 is in the short-distance

domain.
It is instructive to compare our result (7) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N+1(µf ) ,

where the moments of φns
q (ξ, µ) are defined in analogy

with those of F ns
2 (x, Q2). For large values of N the inte-

gral is dominated by the endpoint region (1− x) ∼ 1/N .
The short-distance coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [15] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(8)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (7) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
the integrals over the functions Aq and Bq in (8) run
over the Landau pole of the running coupling αs(µ),
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• If we assume φq(x,μf) ~ (1-x)b(μf) :

• Resummed result obtained after plugging 
in fixed order results for coefficient CV,  
jet-function and anom. dimensions.

Result
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This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
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q . The
right-hand side of (6) can be evaluated at any desired
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Difference to traditional approach

• Simple analytic result in momentum space
• No Landau pole ambiguities. No coupling  

constant below scales μh, μi and μf.

• Freedom to choose scales μh, μi and μf

• Obtain fixed order for μh=μi=μf. Trivial matching 
to fixed order result for generic x.

• Set appropriate scales after integrating

•  Avoids large spurious power corrections 
discussed by Catani et al. hep-ph/9604351

• Estimate uncertainties with scale variation



Result for F2ns(x)/φq(x)

• Default scales: μh2=Q2 and μi2=Q2(1-x)
• Bands obtained by varying these scales a factor of two up 

and down.
• Matching scales are fixed in traditional approach. 
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Comparison with fixed order, μf =Q

• LO (=NLL), NLO, NNLO
• Dashed: fixed order. Solid: resummed.
• Large K-factors. 
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Figure 5: Comparison between fixed-order (dashed) and resummed results (solid) for the K
factor. The green curves are the LO result, red NLO, black NNLO. For the resummed result,
we set µh = Q, µi = MX , µf = Q, and b(µf) = 4. The fixed-order result is obtained by setting
all scales equal to µf .

leading logarithmic (LL) approximation is listed only for completeness, as it neglects terms
that are parametrically much larger than 1.

In Figure ??, we compare the fixed-order calculation of the K factor with the resummed
result for Q = 5GeV and Q = 30GeV. For the resummed result we use the default choice of

scales µh = Q, µi = MX = Q
√

1−x
x and take the asymptotic form of the parton distribution

(??) with b(µf) = 4 in both cases. The fixed-order results can be obtained from our resummed
expression (??) by simply setting µh = µi = µf . Following common practice we choose µf = Q
for the factorization scale. In this case the quantity η < 0, and because of the factor (1−x

x )η in
(??) the resummed results diverge as x approaches 1. The figure illustrates that higher-order
corrections become important as x → 1, and that fixed-order perturbation theory is no longer
adequate in this limit. The magnitude of the K factor can be reduced by adopting a lower
choice for the factorization scale, which is more in line with the philosophy of an effective
field-theory approach. For example, we may consider taking µf ≈ MX(x = 0.9) ≈ 0.32 Q,
corresponding to a typical hadronic invariant mass in the endpoint region. The corresponding
results are shown in Figure ??. We observe that with such a “smart choice” of the factorization
scale the K factor takes more moderate values, and also that the results of the resummation
are less significant.

In Figure ??, we show the scale dependence of the result obtained by varying the hard and
intermediate scales by a factor of 2 about their default values. The figure shows a dramatic
reduction in scale uncertainty when going from LO to NNLO. It also suggests that varying
the two matching scales individually by a factor of 2 may overestimate the perturbative un-
certainty, because the higher-order results lie near the center of the large band obtained by
varying the renormalization scales in the low-order ones. A variation of the scales by a factor

22



Comparison with fixed order, low μf 

• LO (=NLL), NLO, NNLO
• Dashed: fixed order. Solid: resummed.
• Fixed order with µ=µf fairly close to resummed result!
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Figure 6: Same as Figure 5, but with a lower choice of the factorization scale. Specifically, we
take µf = 1.5GeV for Q = 5GeV (left), and µf = 10GeV for Q = 30GeV (right).
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Figure 7: Scale variation of the K factor at Q = 30GeV. The light-gray band is obtained
by varying MX/2 < µi < 2MX , while the dark-gray band arises from varying the hard scale
Q/2 < µh < 2Q. We set µf = 30GeV and b(µf ) = 4.

23

µf =1.5 GeV µf =10 GeV



Comparison with moment space result

• Dashed: Mellin inverted moment space results. Solid: 
momentum space results.

• Only small numerical differences (different scale 
choice, 1/N corrections in moment space).

• Faster convergence of momentum space results.
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Figure 9: Comparison between Mellin-inverted moment space results (dashed) and results
obtained in directly in x-space (solid). The green curves are the LO result, red NLO. The
black lines are NNLO results and are visually indistinguishable from the NLO curves for
Q = 30GeV. We set µh = µf = Q, and b(µf ) = 4. For the intermediate scale, we choose

µi = MX in momentum space and µi = Q/
√

N̄ in moment space.

c smaller than the value of N at which the pole occurs. Even with this prescription, the
numerical integral is not well behaved in the limit x → 1, since the damping of the integrand
becomes weaker and weaker as x approaches the endpoint. In Figure 9 we compare the results
for the x-space structure function obtained through numerical Mellin inversion with those
obtained directly in momentum space (62). One source of numerical differences arises because
the relation (72) is only approximate,4 so that the solution to the RG equation for JN(Q2, µ)
receives corrections which are suppressed as 1/N , while our momentum-space solution (46)
is exact. Another is that the default choice of the intermediate scale µi is different in the
two approaches. The numerical differences are noticeable for smaller values of Q, but become
negligible at Q = 30GeV.

In the effective-theory result for the moments, the Landau pole in the inverse Mellin trans-
formation can be avoided by performing the inversion to x-space with the appropriate scale
choice for momentum space, µi ≈ Q

√
1 − x, instead of µi = Q/

√
N̄ . The freedom to choose

the scales as appropriate for the quantity under consideration is an important advantage of
our approach. The Landau-pole ambiguity in the Mellin inversion is not the only problem that
arises from the fact that the scales cannot be varied in the standard resummation formalism.
An additional difficulty was pointed out in [5]. To illustrate it, let us consider the structure
function at the leading logarithmic level, even though this is not a consistent approximation
in RG-improved perturbation theory. Our result (62) then reduces to

K(x, Q2, µf) = exp [4S(µh, µi) + 2aΓ(µi, µf) ln(1 − x)] , (87)

4The exact form of the RG equation obeyed by the jet-function moments can be found in [31].

30



Connection with standard approach
• Can derive traditional expression for 

resummation in moment space from 
SCET. With µh=Q2  µi=Q2/N

• Note different form of exponent

moment space, so this formula achieves the exponentiation of large threshold logarithms. The
resummation exponent GN is written as

GN(Q2, µf) =
∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)]

, (70)

where the functions Aq and Bq are universal radiation factors determined by matching with
results from fixed-order perturbation theory.

We shall now derive an equation relating the objects g0, Aq, and Bq in (69) and (70) to the
matching coefficients and anomalous dimensions defined in effective field theory. We begin by
transforming the factorization formula (26) into Mellin space, obtaining the product form

F ns
2,N(Q2) = |CV (Q2, µf)|2 JN(Q2, µf)

∑

q

e2
q φns

q,N+1(µf) , (71)

which is valid up to corrections in 1/N . The Mellin-transformed jet function is defined as

JN (Q2, µ) =
∫ Q2

0
dp2

(

1 − p2

Q2

)N−1

J(p2, µ) . (72)

It was shown in [31] that for large N the jet-function moments JN are given by

JN(Q2, µ) = j̃
(

ln
Q2

N̄µ2
, µ

)
+ O

( 1

N

)
, N̄ ≡ eγEN , (73)

and hence obey the same evolution equation (43) as the associated jet function. Using this
connection along with the results derived in Section 3, the resummed coefficient function CN

in (68) can be written as

CN(Q2, µf) = |CV (Q2, µh)|2
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
4S(µh, µi) − 2aγV (µh, µi)

]

× exp
[
2aγφ(µi, µf) − 2 ln N̄ aΓ(µi, µf)

]
j̃
(

ln
Q2

N̄µ2
i

, µi

)
+ O

( 1

N

)
. (74)

We now adopt the “natural” scale choices µh = Q and µi = Q/
√

N̄ , which are implicit
in most treatments of threshold resummation in the literature. This allows us to compare
with the standard expression (69), but as we will discuss at the end of this section, this scale
choice becomes problematic when the expressions for the moments are transformed back to
x-space. Next, we express the RG functions S(µ1, µ2) and an(µ1, µ2) defined in (38) in terms
of integrals over the appropriate anomalous dimensions. After a straightforward calculation,
this leads to

gSCET
0 (Q2, µf) = |CV (Q2, Q)|2 j̃(0, Q) exp

[∫ Q2

µ2

f

dk2

k2
γφ(αs(k))

]

,

GSCET
N (Q2, µf) =

∫ Q2

Q2/N̄

dk2

k2

[

ln
k2

Q2
Γcusp(αs(k)) − γJ(αs(k)) − d ln j̃(0, k)

d ln k2

]

− ln N̄
∫ Q2/N̄

µ2

f

dk2

k2
Γcusp(αs(k)) , (75)

27moment space, so this formula achieves the exponentiation of large threshold logarithms. The
resummation exponent GN is written as

GN(Q2, µf) =
∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)]

, (70)

where the functions Aq and Bq are universal radiation factors determined by matching with
results from fixed-order perturbation theory.

We shall now derive an equation relating the objects g0, Aq, and Bq in (69) and (70) to the
matching coefficients and anomalous dimensions defined in effective field theory. We begin by
transforming the factorization formula (26) into Mellin space, obtaining the product form

F ns
2,N(Q2) = |CV (Q2, µf)|2 JN(Q2, µf)

∑

q

e2
q φns

q,N+1(µf) , (71)

which is valid up to corrections in 1/N . The Mellin-transformed jet function is defined as

JN (Q2, µ) =
∫ Q2

0
dp2

(

1 − p2

Q2

)N−1

J(p2, µ) . (72)

It was shown in [31] that for large N the jet-function moments JN are given by

JN(Q2, µ) = j̃
(

ln
Q2

N̄µ2
, µ

)
+ O

( 1

N

)
, N̄ ≡ eγEN , (73)

and hence obey the same evolution equation (43) as the associated jet function. Using this
connection along with the results derived in Section 3, the resummed coefficient function CN

in (68) can be written as

CN(Q2, µf) = |CV (Q2, µh)|2
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
4S(µh, µi) − 2aγV (µh, µi)

]

× exp
[
2aγφ(µi, µf) − 2 ln N̄ aΓ(µi, µf)

]
j̃
(

ln
Q2

N̄µ2
i

, µi

)
+ O

( 1

N

)
. (74)

We now adopt the “natural” scale choices µh = Q and µi = Q/
√

N̄ , which are implicit
in most treatments of threshold resummation in the literature. This allows us to compare
with the standard expression (69), but as we will discuss at the end of this section, this scale
choice becomes problematic when the expressions for the moments are transformed back to
x-space. Next, we express the RG functions S(µ1, µ2) and an(µ1, µ2) defined in (38) in terms
of integrals over the appropriate anomalous dimensions. After a straightforward calculation,
this leads to

gSCET
0 (Q2, µf) = |CV (Q2, Q)|2 j̃(0, Q) exp

[∫ Q2

µ2

f

dk2

k2
γφ(αs(k))

]

,

GSCET
N (Q2, µf) =

∫ Q2

Q2/N̄

dk2

k2

[

ln
k2

Q2
Γcusp(αs(k)) − γJ(αs(k)) − d ln j̃(0, k)

d ln k2

]

− ln N̄
∫ Q2/N̄

µ2

f

dk2

k2
Γcusp(αs(k)) , (75)

27



Connection with standard approach

• Can relate EFT expression to standard 
result. The two agree provided that

• fulfilled with two-result from explicit 
calculation of J(p2).

• coefficient Bq is not an anomalous 
dimension

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Momentum space?

• Past controversy about performing 
resummations in momentum space. 
Claims that

1. exponentiation is incomplete
2. momentum conservation is violated
3. there are large ambiguities, not related 

to Landau pole singularities.
 

• 3. are not present in our formalism. Not 
sure what 1. and 2. mean.

Catani, Mangano, Nason, Trentadue ‘96



Integral over structure function at LL

• LL, expand exponent in 

• With scale choice

• Choose scales after integration!
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In this case, the appropriate choice of the intermediate scale for integral Fns
2 (x, Q2) is µi ∼

Q
√

1 − x, as can be checked by explicitly performing the integral over (63). If one instead
chooses the scale µi to avoid logarithms on the level of the integrand, then the integral (89)
becomes singular. To see the problem, we set µf = µh = Q, µi ≈ Q

√
1 − y and, for illustration

purposes, approximate the Sudakov factor by expanding it to leading order around fixed
coupling αs(Q), as was done in [5]. The integral (89) then becomes
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with a = Γ0
αs(Q)

8π . Because the exponential factor grows faster than any power as y → 1, this
integral diverges. Its expansion in a is an asymptotic series with factorially growing terms.
As was shown in [5] the ambiguity associated with the non-integrable singularity for y → 1 is
of order

e−1/4a ∼
(ΛQCD

Q

) β0

4CF ≈
(ΛQCD

Q

)1.4
(91)

for nf = 5. In [5] it was shown that the above divergence does not occur if the Sudakov resum-
mation is performed in moment space and the inverse transformation is performed exactly,
without dropping subleading logarithms ln(1 − x). From this, the authors concluded that
the appropriate place to perform resummations is moment space and that leading logarithmic
resummations in x-space are problematic. Our analysis shows that it is simply a bad choice
of scale that produces the problem of the spurious power correction: the usual moment-space
formalism produces logarithms ln2 N in the Sudakov exponent, which translates into ln2(1−x)
at leading logarithmic accuracy, which in turn causes the problem in (90). However, the proper
way to perform the calculation is to keep the matching scales arbitrary and choose them such
that the final result of a given calculation does not contain large logarithms. This avoids
the above problem as well as the occurrence of Landau-pole ambiguities in inverse Mellin
transforms.

We hope that the above discussion helps to overcome the misconception that Mellin mo-
ment space is the “correct place” to perform the threshold resummation, and that resummation
in x-space leads to inconsistent results. Quite to the contrary, the final analytical formulae we
obtain in momentum space are simpler than those derived in moment space, they are free of
spurious, unphysical power ambiguities and, as Figure 9 shows, the perturbative expansion in
x-space exhibits a better apparent convergence.
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Nonintegrable singularity!



Summary

• Traditionally, resummation for hard processes is 
performed in moment space.
• Landau poles (in Sudakov exponent and Mellin inversion)
• Mellin inversion only numerically

• Solving RG equations in SCET, we have obtained 
resummed expressions directly in momentum 
space.
• Clear scale separation. No Landau pole ambiguities.
• Simple analytic expressions.
• Trivial connection with fixed order expressions. 

• Same technology is applicable to many other 
processes.
• See Matthias’s talk


